Linear/additive preservers of rank 2 on spaces of alternate matrices over fields

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spaces of rank-2 matrices over GF(2)

The possible dimensions of spaces of matrices over GF(2) whose nonzero elements all have rank 2 are investigated.

متن کامل

On Rank Problems for Subspaces of Matrices over Finite Fields

In this thesis we are concerned with themes suggested by rank properties of subspaces of matrices. Historically, most work on these topics has been devoted to matrices over such fields as the real or complex numbers, where geometric or analytic methods may be applied. Such techniques are not obviously applicable to finite fields, and there were very few general theorems relating to rank problem...

متن کامل

Linear spaces and preservers of bounded rank-two per-symmetric triangular matrices

Let F be a field and m,n be integers m,n > 3. Let SMn(F) and STn(F) denote the linear space of n × n per-symmetric matrices over F and the linear space of n × n per-symmetric triangular matrices over F, respectively. In this note, the structure of spaces of bounded rank-two matrices of STn(F) is determined. Using this structural result, a classification of bounded rank-two linear preservers ψ :...

متن کامل

NUMBER OF RANK r SYMMETRIC MATRICES OVER FINITE FIELDS

We determine the number of n×n symmetric matrices over GF (p) that have rank r for 0 ≤ r ≤ n. In [BM2] Brent and McKay determine the number of n × n symmetric matrices over Zp that have determinant zero. Thus they determine the number of n× n symmetric matrices over Zp that have rank n. We extend their result to symmetric matrices over GF (p) and we determine the number of matrices that have ra...

متن کامل

The rank of sparse random matrices over finite fields

Let M be a random matrix over GFq] such that for each entry M ij in M and for each non-zero eld element the probability PrrM ij = ] is p=(q ? 1), where p = (log n ? c)=n and c is an arbitrary but xed positive constant. The probability for a matrix entry to be zero is 1?p. It is shown that the expected rank of M is n ? O(1): Furthermore, there is a constant A such that the probability that the r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2005

ISSN: 0024-3795

DOI: 10.1016/j.laa.2004.08.028